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Abstract
The extension of Langevin-equation Monte-Carlo algorithms for Coulomb collisions from the

conventional Euler-Maruyama time integration to the next higher order of accuracy, the Milstein

scheme, has been developed, implemented, and tested. This extension proceeds via a formula-

tion of the angular scattering directly as stochastic differential equations in the two fixed-frame

spherical-coordinate velocity variables. Results from the numerical implementation show the ex-

pected improvement [O(∆t) vs. O(∆t1/2)] in the strong convergence rate both for the speed |v|

and angular components of the scattering. An important result is that this improved convergence

is achieved for the angular component of the scattering if and only if the “area-integral” terms in

the Milstein scheme are included. The resulting Milstein scheme is of value as a step towards algo-

rithms with both improved accuracy and efficiency. These include both algorithms with improved

convergence in the averages (weak convergence) and multi-time-level schemes. The latter have been

shown to give a greatly reduced cost for a given overall error level when compared with conventional

Monte-Carlo schemes, and their performance is improved considerably when the Milstein algorithm

is used for the underlying time advance versus the Euler-Maruyama algorithm. A new method

for sampling the area integrals is given which is a simplification of an earlier direct method and

which retains high accuracy. This method, while being useful in its own right because of its relative

simplicity, is also expected to considerably reduce the computational requirements for the direct

conditional sampling of the area integrals that is needed for adaptive strong integration.
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I. INTRODUCTION

In this paper, we describe the application of higher-order stochastic-differential-equation

(SDE) numerical integration methods to the problem of Coulomb collisions in a dilute (clas-

sical weakly coupled) plasma.

Coulomb collisions arise and can dictate or strongly affect the behavior of many plasma

systems. Examples arise in magnetic fusion (MFE) [1], inertial fusion (ICF) [2], plasma

processing [3], and near-earth (or planetary) space plasma [4]. There has been a long history

of study of Coulomb collisions in plasmas. In his pioneering work, Landau [5] recognized

that the action of the Coulomb collisions on the velocity of a charged particle in a plasma is

dominated by many small-angle collision events, i.e., that large-angle events are so unlikely

as to be subdominant in their effect, and that the relevant expression to describe their

effect on the plasma distribution functions is therefore a drag-diffusion (“Fokker-Planck”)

term rather than a Boltzmann term. Landau’s collision term gives the rate of change of

the phase-space distribution function (density) fα (x,v) of plasma charged-particle species

α (which could be electrons or an ion species) as

∂fα
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·
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ˆ
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�
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where the sum is over the index β of the plasma charged-particle species, x and v are the

position and velocity, t is the time, fα ≡ fα (x,v), qβ is the charge of species β, f �
β ≡

fβ (x,v�), u = v − v�, u = |u|, and λ is the “Coulomb logarithm.” That Eq. (1) is in the

form of a drag-diffusion equation is evident from the fact that fα and ∂fα/∂v are local in

x and v and only derivatives up to the second derivative in v appear. Another important

property of the right hand side of Eq. (1) is that it is in conservative (or “continuity”) form,

i.e., it is the (velocity-space) divergence of a flux. Eq. (1) contains explicit expressions for

the drag and diffusion coefficients in terms of the distribution functions fβ of the plasma

species, and forms the basis for (both analytical and computational) treatments of Coulomb

collisions used to this day.

While analytical results are available for a wide variety of idealized problems [6], solutions

often are needed for cases where a clean separation between the time scales associated with

various competing effects, including Coulomb collisions, do not exist, and so these analytic
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results are not applicable. Unless the collisonal time scales are much more rapid than

the other time scales in the system, kinetic (i.e., non-hydrodynamic) phenomena may be

important. In many cases where the collisonal time scale for gross changes in the plasma

distribution function is long, the plasma behavior is dictated by kinetic features that are

localized in velocity space. Because of the diffusive nature of the Coulomb collisions, the

rate at which they act on these kinetic features can become competetive with the rates of

other effects. Kinetic numerical plasma simulation methods, including initial-value solutions

for time-dependent problems and relaxation methods for time-independent problems, have

therefore become widely used to study plasma phenomena. These simulation methods can

be broadly grouped into particle-based, hybrid, and continuum-kinetic methods, and it is

for the first two that our results are useful.

Particle-based kinetic plasma simulation methods include direct mesh-free methods in

which the Coulomb interactions between pairs of particles are treated directly, particle-in-

cell (PIC) and the related δf -PIC methods. The PIC methods can achieve great efficiency

gains relative to the direct methods by mediating the Coulomb interactions through spatial

mesh quantities (densities, currents, electric and magnetic fields). Hybrid methods generally

treat a plasma system as a combination of a part that is treated with a particle-based

method with a part that can be treated as a fluid (i.e., is described by a small number of

variables that depend on position and time, and not on the velocity). The kinetic continuum

(or “Vlasov”) methods evolve the distribution function (phase-space density) directly on a

kinetic phase-space (i.e., position-velocity) mesh treating it essentially as a fluid in phase

space. In the PIC and δf -PIC methods, the use of the mesh to mediate the interactions

between the charged particles greatly reduces and alters the collisions, as represented by the

system [7, 8]. The collisions can be restored to physically relevant levels through the use of

statistical “Monte-Carlo” (MC) methods. These utilize the fact that a drag-diffusion (partial)

differential equation, such as Eq. (1), can be viewed as an equation for the expectation

(mean) phase-space density of a group of “particles” whose velocities evolve according to

stochastic (ordinary) differential equations, and which can be approximately solved with a

discretization using a finite ensemble of such particles. For most problems of interest, this

approach (combining PIC or δf methods with MC methods) is much more computationally

efficient than direct pair-wise computation of the Coulomb interactions.

Various authors have developed Monte-Carlo discretizations of the Coulomb collision op-
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erator. One approach, upon which the present work based, is Langevin-equations based

algorithms [9–12]. In this approach, each particle is treated as a test particle, acted on by

drag and stochastic forces such that the expectation of the result of the latter is the appropri-

ate Landau term. The resulting operator can be made self-consistent through the inclusion

of “field-particle” effects, which include (but are not limited to) enforcing momentum and

energy conservation. This can be done via a cell-by-cell shift (boost) and rescaling of the

particle velocities (in the case of a PIC algorithm) or via source/sink terms that manifest

themselves as a change in the particle weights (in a δf -PIC method). Another approach is

binary Monte-Carlo collision algorithms [13–15]. In these, the particles are scattered elas-

tically in pairs, thereby giving quite accurate momentum and energy conservation for each

scattering event. The particles are typically paired with other particles in the same spatial

cell. Although the conservation is not perfect (because the particles in a pair do not reside

at identical spatial positions, the inaccuracy (spreading) can be controlled to be acceptably

small. The scattering is done by a rotation of the relative velocity vector of the particles.

These rotations are not those for individual physical Coulomb collisions at given impact

parameters, but are chosen from a statistical ensemble so that, again, the expectation of

the result matches the Landau operator. Coulomb collisions have also been introduced into

continuum-kinetic methods [16–18].

Numerical Langevin-equations-based Coulomb collision treatments to date [9–12] have

predominantly used the lowest-order temporal SDE discretization, the Euler-Maruyama

method [19]. However, higher-order temporal SDE discretizations have been developed

[19, 20] and have found quite wide use, for example in financial applications and chemical

physics. Going up in the hierarchy of temporal SDE discretization methods beyond the

Euler-Maruyama method are the Milstein method, which achieves a higher order of strong

convergence [19] and, beyond the Milstein scheme, class of schemes that achive higher-order

weak convergence [19]. In the present work, we extend the Langevin-equations-based treat-

ment of Coulomb collisions to the next higher order of accuracy beyond the conventional

Euler-Maruyama time integration, i.e., the Milstein scheme. The Milstein method is of in-

terest for two reasons: (A) It is the first in a hierarchy of higher-order methods for SDE’s,

which also includes schemes with improved (higher-order) weak convergence. (B) When used

instead of the Euler-Maruyama scheme as the underlying building block of Giles’ multi-(time-

)level scheme [21], the resulting efficiency is significantly improved, i.e., the computational

5



complexity for a given overall error is significantly reduced. Both the multi-level schemes

[21] and the higher-weak-order schemes [19] have been shown to give improved computa-

tional efficiency over the Euler-Maruyama scheme for the numerical solution of SDE’s, i.e.,

smaller error for a given computational cost or lower computational cost for a given error in

the solution. A more detailed discussion of these errors and costs will be given at the end

of Sec. II.

The concept of strong convergence is central to understanding the properties of the Mil-

stein scheme, but is perhaps less familiar in the plasma-physics literature than weak conver-

gence, so a brief discussion of these, including the distinction between them is warranted.

Strong convergence concerns the strong error, which can be defined as the expectation value

(over paths) of the discretization error in each individual path. One specific choice of the

discretization error, which we use in this paper, is the error at a specific time T. If S(T ) is

the (possibly vector-valued) solution to a SDE evaluated at time T , and ŜT/h is the value

at time T given by a the solution of a temporal discretization of the SDE with time step h

[and with the same initial condition, i.e., Ŝ0/h = S(0)], then the definition that will be used

here of the strong error at time T in the discretized solution is [21]

εstrong [S, T, h] =

����S(T )−ŜT/h

���
2
�1/2

, (2)

where �A� denotes some suitable norm of (the vector) A, and �f� denotes the expectation

value over paths (also often denoted as E [f ]) of any functional f of the path. Then the

discretization that was used to obtain ŜT/h is said to have O (hα) strong convergence if

εstrong [S, T, h] = O (hα) as h → 0. In contrast, weak convergence concerns the weak error,

which is defined as the error in the average of a path-dependent quantity over paths. While

there are more general definitions [19], it is useful to consider the particular weak error at a

specific time, which is analogous to the choice made in the definition of the strong error in

Eq. (2):

εweak [S, T, h] = �S(T )� −
�
ŜT/h

�
, (3)

The discretization that was used to obtain ŜT/h is then said to have O (hα) weak convergence

if εweak [S, T, h] = O (hα) as h → 0.

In order to give an example of strong convergence, Fig. 1 shows plots of a normalized
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Figure 1: (a) Speed v [normalized as explained later after Eqs. (20)-(22)], and (b) component of
the velocity unit vector along a given axis µ vs. normalized time for numerical solutions of Eq.
(17), for one underlying trajectory, using the Milstein algorithm with different values of the time
step. The line segments connect points, which are represented by the dots, along each discretized
trajectory.

velocity variable v and the component of the velocity unit vector along a given axis µ versus

the normalized time t from various computations of one underlying sample trajectory. The

particular equation used [Eqs. (13) or Eq. (23)] will be derived and discussed in detail

later in this paper. The simulations are run to an end time tend = 1.0. Each trajectory is

calculated using the Milstein scheme, and the time step values used are ∆t = tendM
−j, with

M = 3, and j = 0, 1, 2, . . . 10. While the end points from the coarser calculations show some

scatter, the finer computations (those with smaller time steps) approach a well defined end

point at t = tend. This figure illustrates that, even for stochastic trajectories, computations

can be carried out with different values of the time step for a given underlying trajectory,

and the values of the variables at any given time point (including the end time point) can

converge to well defined values. The strong convergence studies that will be shown later

in this paper examine differences taken between variable values from computations for the

same underlying trajectory, but which use different values of the time step.

There have been some partial implementations of the Milstein method for Coulomb colli-

sions [11, 12], but in these works, strong-convergence tests were not undertaken and no sig-

nificant effect of the additional Milstein terms was observed. A second-order weak method

has also been implemented for Coulomb collisions as a part of a neoclassical monte-carlo

transport code for the study of transport in stellarators [22, 23], although the improved

weak convergence for the particular collisional implementation was not documented. There
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is therefore a need for studies such as the present one that focus on the details of the im-

plementation and on the improved rates of convergence for the higher order schemes in the

context of the Coulomb-collision problem.

The organization of the remainder of this paper is as follows. In Sec. II, the Euler-

Maruyama and Milstein schemes for a (vector) system of SDE’s are briefly summarized

and reviewed. The discussion of our approach for the Milstein treatment of the Coulomb-

collision problem begins in Sec. III where we develop the SDE’s (Langevin equations) for

the velocity expressed with the direction referenced to a fixed (“laboratory”) frame that are

consistent with the test-particle Maxwellian-background reduction of Eq. (1). This differs

from the approach of [11], where the Langevin equations are formulated with respect to the

current velocity direction, as is discussed in detail in section III (and in the appendix.) The

Milstein discretization of the collisional Langevin equations is also given explicitly in Sec.

III. While this follows somewhat routinely from the Langevin equations, as discussed in

section II, its implementation requires the sampling of particular (non-Gaussian) random

numbers known as area integrals. In Sec. IV we discuss the area integrals and develop a new

and highly efficient and accurate method for their sampling. In Sec. IV, we also address the

“compounding” of the random numbers (including the area integrals) that is needed both

for strong-scaling studies and for the use of the Milstein scheme within a multi-level SDE

algorithm [21]. The results of our Euler-Maruyama and Milstein implementations, including

the scalings of the errors with the time step, are shown and discussed in Sec. V. A summary

and discussion of our work is given in Sec. VI.

II. EULER-MARUYAMA AND MILSTEIN SCHEMES

Higher order methods can be formulated and understood in terms of iterative Taylor

expansions of the formal finite-time integral solution [19]. The Euler-Maruyama and Milstein

methods are the first two in a hierarchy of successive integration methods for SDE’s of

increasing order in the computational time step ∆t. Consider the formal discrete SDE for a

vector Y (t) with components Y i (t)

dY
i (t) = a

i(t,Y (t))dt+ b
i(t,Y (t))dW i (t) . (4)
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Here, each W i (t) is a Wiener process, i.e., a stochastic process with centered Gaussian

increments which are independent for non-overlapping time intervals and which have variance

��
W

i (t2)−W
i (t1)

�2�
= |t2 − t1| . (5)

As such, Eq.(4) is not completely specified, but can be made so by considering it as a

limit of a time-discrete equation in which all time-dependent quantities are given at times

τk = t0+kδt, where k is an integer time index and δt is a positive time increment. One such

specification, known as the “Ito interpretation” (or specification), can be stated as the limit

as δt → 0 for the vector yk = Y (τk), the components of which we denote as yik, and which

evolve according to

y
i
k+1 = y

i
k + δy

i
k, where

δy
i
k = a

i(τk,yk)δt+ b
i(τk,yk)δW

i
k. (6)

Here, each δW i
k’s is a centered normal random number with variance δt, and is indepen-

dent of δW j
l unless i = j and k = l. The key point in Eq. (6) is that in the evaluation of bi,

the value of Y at the start of the time increment is used. Other specifications can be used.

In the Stratonovich interpretation, for example, the b term in Eq. (6) is replaced by

b
i(τk,

1

2
[yk + yk+1])δW

i
k.

This distinction is important in that it affects the particular placement of the derivatives

(drag terms) in the equation for the expectation value of the probablility density of Y.

Then dY i (t) can be defined by its integral. A simple version of such a definition is

Y
i (t0 +∆t)− Y

i (t0) =

t0+∆tˆ
t0

dY
i (t)

= lim
N→∞

N−1�

k=0

δy
i
k,

where δyik is given by Eq. (6), with δt = ∆t/N .
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The temporal discretizations to be formulated and used for computation can then be given

by taking ∆t to be the (finite) computational time step. The discretized SDE attempts to

approximate Ym = Y (tm), the components of which we denote as Y i
m, and where tm =

t0 +m∆t. The Euler-Maruyama and Milstein discretizations of Eq. (4) can be obtained as

truncations of iterated expansions of the formal solution of Eq. (6).

The Euler-Maruyama scheme is

Y
i
M = Y

i
Eul,M = Y

i
0 +

M�

m=1

∆EulY
i
m−1, where

∆EulY
i
m = a

i(tm,Ym)∆t+ b
i(tm,Ym)∆W

i
m,

where each ∆W i
m is a centered Gaussian random number with variance ∆t, and is indepen-

dent of ∆W j
n unless i = j and m = n. The Euler-Maruyama scheme has the associated

strong and weak errors [19]

∆EulY
i
m −∆Y

i
m =






O (∆t) − strong,

O (∆t2) − weak.

If this scheme is run for some number M time steps over a time duration T = M∆t �
�b�2 / �a�2, then the resulting errors are (from the proof of theorem 10.6.3 and from theorem

14.6.1 of Ref. [19])

Y
i
Eul,M − Y

i
M =






O

�√
T∆t

�
− strong,

O (T∆t) − weak.

The Milstein (first-order “strong” in �t) scheme is is
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Y
i
M = Y

i
Milst,M = Y

i
0 +

M�

m=1

∆MilstY
i
m−1, where (7)

∆MilstY
i
m = a

i(tm,Ym)∆t+ b
i(tm,Ym)∆W

i
m

+ b
i
,j(tm,Ym)b

j(tm,Ym)

ˆ ∆t

0

dW
i(tm−1 + s)

ˆ s

0

dW
j(tm−1 + η).

The last term in Eq. (7) contains the double “area integral,” which can be defined as

Aij,m =

ˆ ∆t

0

dW
i(tm + s)

ˆ s

0

dW
j(tm + η) = lim

N→∞

N�

k=1

δW
i
mN+k−1

k−1�

l=1

δW
j
mN+l−1,

and which are highly non-Gaussian random numbers. Note that because it is formed from

increments of the fine Wiener increments, e.g., δW i
l , and these also must satisfy ∆W i

m =
�N

k=1 δW
i
mN+k−1, any sampling method for these integrals must respect the correlations

between Aij,m, and ∆W i
m and ∆W j

m. The sampling of these area integrals will be addressed

in detail in Sec. IV.

The Milstein scheme has the associated strong and weak errors [19]

∆MilstY
i
m −∆Y

i
m =






O
�
∆t3/2

�
− strong,

O (∆t2) − weak.

Note that the improvement in the error scaling for the Milstein scheme is for the strong

error only.

Running this scheme for M time steps over a time duration T = M∆t � �b�2 / �a�2

yields the resulting errors (again from the proof of theorem 10.6.3 and from theorem 14.6.1

of Ref. [19])

Y
i
Milst,M − Y

i
M =






O

�√
T∆t

�
− strong,

O (T∆t) − weak.
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The Milstein method is of interest for two reasons. It is the first in a hierarchy of

higher-order methods for SDE’s. This hierarchy includes schemes with improved (higher-

order) weak convergence. Also, when used instead of the Euler-Maruyama scheme as the

underlying building block of the Giles’ multi-(time-)level scheme [21], the resulting efficiency

is significantly improved, i.e., the computational complexity for a given overall error is

significantly reduced.

Giles [21] gave a set of arguments, including a “complexity theorem,” which compares the

expected asymptotic computational cost between single-level and multi-level Euler and Mil-

stein schemes. Specifically, he argued that for a given rms error �, so that the mean squared

error (MSE) is �2, for MC integration up to a given time, the computational complexity

(number of operations) scales dominantly as

• C = O (�−3) for the single-level Euler-Maruyama and Milstein schemes

• C = O
�
�−2 [log �]2

�
for the Euler-Maruyama-based multi-level scheme

• C = O (�−2) for the Milstein- or any higher-strong-order algorithm-based multi-level

scheme.

Note that Giles argues [21] that going beyond the Milstein algorithm in a multi-level scheme

(i.e., using an algorithm with higher strong or weak order than the Milstein algorithm) does

not result in any further improvement in the complexity vs. error beyond the Milstein-based

multilevel scheme.

Because of prior work in the plasma-physics literature on higher-order weak schemes, it is

of interest to also apply Giles’ reasoning to a single-level scheme of arbitrary weak order. In

order to achieve a MSE of order �2 optimally in a single-level MC scheme, both the square

of the bias error and the variance should be of order �2. For an O (∆tn) weak MC scheme,

the bias error at a fixed end time versus ∆t scales asymptotically as ∆tn. Thus, the number

of time steps scales as �1/n. The single-realization variance is asymptotically independent

of ∆t, ie. it scales as O (∆t0). Therefore the number of realizations (particles) needed to

reduce the variance to O (�2) is of orderO (�−2). The complexity for a single-level calculation

the product of the number of time steps and particles, i.e.,

• C = O
�
�−(2+1/n)

�
for the single-level, O (∆tn) weak MC scheme.
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This is consistent with Giles’ results for the single-level Euler-Maruyama and Milstein

schemes. Thus, for example, a single-level MC calculation using a second-order weak scheme

will have computational complexity that scales asymptotically as �−2.5. The multi-level

schemes, including the Euler-Maruyama based scheme, are therefore expected to result in

significant efficiency improvements over single-level Monte-Carlo schemes, and the Milstein-

based multi-level scheme has the potential to be optimal among the various schemes.

We have implemented a 2-dimensional Multi-level Milstein scheme, using a representation

and area-integral sampling method developed in this paper, and preliminary results show

the expected scaling of computational time with MSE .

III. LANGEVIN EQUATIONS AND THE EULER-MARUYAMA AND MILSTEIN

SCHEMES FOR THE COULOMB-SCATTERING TEST-PARTICLE PROBLEM

In this section, we develop the SDE’s (Langevin equations) for the velocity expressed

with the direction referenced to a fixed (“laboratory”) frame, and which are consistent with

the test-particle, isotropic-Maxwellian-background reduction of Eq. (1). The Milstein dis-

cretization of the collisional Langevin equations will also given explicitly. Our formulation

differs from that in a widely used class of schemes [9, 11, 12], in which the angular-evolution

steps are formulated in a frame aligned with the velocity at the start of the step.

The drag and diffusion coefficients for test-particle Coulomb scattering in an isotropic

Maxwellian distribution of field particles, and which therefore correspond to the drag and

diffusion coefficients that are effectively present in Eq. (1) were calculated explicitly in terms

of known standard functions (the error function) by Chandrasekhar [24] (for the similar

case of gravitational interactions), Spitzer [25] and Trubnikov [6]. Rosenbluth, MacDonald

and Judd [26] transformed Eq. (1) to spherical velocity coordinates which are the speed

v, µ = cos θ, where θ is the angle with respect to some reference axial direction, and the

azimuthal angle φ. They also gave an elegant expression of the drag and diffusion coefficients

in terms of potential functions that can be evaluated via a simple elliptic (Poisson-) equation

solution. Trubnikov’s evaluation of the drag and diffusion coefficients in Eq. (1) for the

isotropic Maxwellian field-particle case [6] was through the evaluation of these potential

functions.

The isotropy of the drag and diffusion coefficients is a useful simplifying feature of the
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present problem, which can be viewed as a special case of the results of Ref. [26]. The

test-particle equation can be obtained from Eqs. (19), (31) of Ref. [26] by fixing the

field particle distribution in the potential functions g and h, effectively considering the field

particles to be a separate species that does not evolve, even when the field particles represent

the same physical species as the test particles. The main result of Ref. [26] (Eq. (31) of

Ref. [26]) is for the case of azimuthally symmetric test- and field-particle distributions. The

corresponding result for general (non-axisymmetric) test-particle distribution, but still an

azimuthally symmetric field-particle distribution, is also easily obtained from Ref. [26] by

keeping the S33 term given in Eq. (30) of Ref. [26] in the evaluation of the terms in Eq.

(22) of Ref. [26]. Doing so, and taking the field particles to be isotropic, so that all of the

partial derivatives of the potential functions g and h of Ref. [26] with respect to µ are zero,

gives

1

Γtf

�
∂ft

∂t

�

c

= − 1

v2

∂

∂v

��
v
2∂h

∂v
+

∂g

∂v

�
ft

�
+

1

2v2
∂2

∂v2

�
v
2∂

2g

∂v2
ft

�

+
1

2v3
∂g

∂v

�
∂

∂µ

��
1− µ

2
� ∂ft
∂µ

�
+

1

(1− µ2)

∂2ft

∂φ2

�
. (8)

Here,

Γtf =
4πq2t q

2
fλ

m2
t

,

where the subscripts t and f refer to test- and field-particle quantities, qt and qf are the

test and field-particle masses mt is the test-particle mass, and λ is the Coulomb logarithm.

The results of Ref. [26] can easily be generalized, if needed, to allow for azimuthal (φ)

dependence in the potential functions g and h. These can be expressed using Trubnikov’s

normalizations

g (v) = −8πψf (v) ,

h (v) = −4π

�
1 +

mt

mf

�
ϕf (v) ,

where
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ψf (v) = − 1

8π

ˆ
dv�

ff |v − v�| ,

ϕf (v) = − 1

4π

ˆ
dv�

ff |v − v�|−1
.

The functions ψf and ϕf then satisfy the simple Poisson equations

∇2
vψf = ϕf ,

∇2
vϕf = ff .

They are evaluated by Trubnikov for the Maxwellian case in Ref. [6] [Eqs. (17.5), (17.9),

(17.22), (17.23), (15.9) therein]. The results are

g (v) = nfv

�
Φ

x2
+ (Φ−G)

�
,

=
1

2
nf

√
2vf

�
Φ

�
2x+

1

x

�
+ Φ�

�
,

h (v) =
1

2

�
1 +

mt

mf

�
1

v2

∂

∂v

�
v
2∂g

∂v

�
.

= nf

�
1 +

mt

mf

�
Φ

v
.

Here, Φ (x) is the standard error function and G is the Chandrasekhar function

G (x) =
Φ (x)− xΦ� (x)

2x2
.

Also, nf is the field-particle density, mt and mf the test and field-particle masses,

x = lfv,

lf =
�√

2vf
�−1

,

vf =

�
Tf

mf
,

and Tf is the field-particle temperature. The drag force Fd and the v and angular diffusion
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coefficients Dv and Da then follow as

Fd(v) = −Γtf

�
∂h

∂v
+

1

v2

∂g

∂v

�

= −AD

2v2

���
1 +

mt

mf

�
2l2fv

2 + 1

�
G (lfv)− Φ (lfv)

�
, (9)

Dv(v) =
Γtf

2

∂2g

∂v2
=

AD

2v
G (lfv) , (10)

Da(v) =
Γtf

2v3
∂g

∂v
=

AD

4v3
[Φ (lfv)−G (lfv)] , (11)

where

AD = 2nfΓtf =
8πnfq

2
t q

2
fλ

m2
t

.

As discussed in the appendix, these results agree with those of Ref. [11], which are based

on the results of Refs. [24] and [25].

To obtain the appropriate SDE’s, one can proceed directly from Eqs. (8), (9), (10), and

(11). Multiplying Eq. (8) by 2πv2, writing f̂t = 2πv2ft, and taking the derivatives to the

outside gives

�
∂f̂t

∂t

�

c

= − ∂

∂v

�
Fd(v) f̂t

�
+

∂2

∂v2

�
Dv(v) f̂t

�

+
∂

∂µ

�
2Da(v)µ f̂t

�
+

∂2

∂µ2

�
Da(v)

�
1− µ

2
�
f̂t

�
+

∂2

∂φ2

�
Da(v)

(1− µ2)
f̂t

�
. (12)

Eq. (12) is in the form of the Fokker-Planck equation for a 3-dimensional SDE system with

drag and diffusion coefficients that depend on the variables in the Ito-calculus. It is also the

Fokker-Planck equation corresponding to forward explicit discretizations of this SDE, such

as the Euler-Maruyama or Milstein schemes. The resulting SDE’s are

dv (t) = Fd (v) dt+
�
2Dv(v)dWv (t) , (13)

dµ (t) = −2Da(v)µdt+
�
2Da(v) (1− µ2)dWµ (t) , (14)

dφ (t) =

�
2Da(v)

(1− µ2)
dWφ (t) . (15)

We choose to normalize the velocity to vf , i.e., use v̂ = v/vf as the velocity variable. This
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normalization is perhaps not the most convenient for the argument of the error function and

associated functions, but gives the 1D field-particle Maxwellian a variance of 1. That is

FMf (v̂) =
1√
2π

exp

�
− v̂2

2

�
.

Define a standard thermal field-particle collision rate νf by

νf =
4πnfq

2
t q

2
fλ

m2
tv

3
f

=
AD

2v3f
(16)

and normalize the time by this rate, i.e., t̂ = νf t. Then the resulting dimensionless equations

are

dv̂
�
t̂
�
= F̂d (v̂) dt̂+

�
2D̂v(v̂)dWv

�
t̂
�
, (17)

dµ
�
t̂
�
= −2D̂a(v̂)µdt̂+

�
2D̂a(v̂) (1− µ2)dWµ

�
t̂
�
, (18)

dφ
�
t̂
�
=

�
2D̂a(v̂)

(1− µ2)
dWφ

�
t̂
�
, (19)

with the normalized (dimensionless) drag and diffusion coefficients

D̂v(v̂) =
Dv(v)

νfv
2
f

=
1

v̂
G

�
v̂√
2

�
, (20)

D̂a(v̂) =
Da(v)

νf
=

1

2v̂3

�
Φ

�
v̂√
2

�
−G

�
v̂√
2

��
. (21)

F̂d(v̂) =
Fd(v)

νfvf
= −

�
1 +

mt

mf

�
v̂D̂v(v̂) + 2v̂D̂a(v̂). (22)

In the remainder of this paper, we work in the normalized variables, and the carets are

suppressed.

The Euler and Millstein schemes are next elaborated for the two-dimensional v − µ

Langevin Coulomb collision operator. This operator assumes axial symmetry in velocity

space, so that the value of φ is immaterial. From Eqs. (17) and (18), we can obtain the

corresponding Euler and Milstein schemes by iterative Taylor expansion and retention of
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terms up to O

�√
∆t

�
for Euler or O (∆t) for Milstein:

∆v = Fd0∆t+
�

2Dv0∆Wv + κMD
�
v0

1

2

�
∆W

2
v −∆t

�
, (23)

∆µ = −2Da0µ0∆t+
�

2Da0 (1− µ2
0)∆Wµ,

+κM

�
−2Da0µ0

1

2

�
∆W

2
µ −∆t

�
+

�
Dv0

Da0

�
(1− µ2

0)D
�
a0Avµ

�
, (24)

∆φ =

�
2Da(v)

1− µ2
0

∆Wφ + κM

��
Dv0

Da0

D�
a0�

1− µ2
0

Avφ +
2Da0µ0

1− µ2
0

Aµφ

�
, (25)

where the coefficient κM = 0 for Euler, and 1 for Milstein, and

∆t = ti+1 − ti,

Fd0 = Fd (v0) ,

v0 = v (ti) ,

µ0 = µ (ti) ,

Dv0 = Dv (v0) ,

D
�
v0 = D

�
v (v0) , (26)

Da0 = Da (v0) ,

D
�
a0 = D

�
a (v0) ,

∆Wj =

ˆ ti+1

ti

dWj (s) ,

Ajl =

ˆ ti+1

ti

dWl (s)

ˆ s

ti

dWj (ξ) ,

for j, l = v, µ,φ. Note that here, we have put the component indices, e.g., j in ∆Wj as

subscripts instead of as superscripts as was done in Sec. II, and that this does not cause a

notational conflict because there is no time-index subscript in Eqs. (26).

IV. SAMPLING AND COMPOUNDING AREA INTEGRALS

As noted in Sec. II, multidimensional Milstein cases generally require sampling of the

area integrals. These are highly non-Gaussian random numbers, and their sampling needs

18



to be done consistently with the associated Wiener displacements.

Several methods have been developed for this sampling. One class of approaches is based

on discrete representations [19], [27]. Kloeden and Platen ([19], section 5.8) consider the

calculation of the area integrals via the truncation of a series that results from a Fourier-

series representation of the Wiener process, and showed that the mean square error in the

resulting samples scales as the inverse of the number of terms kept. Gaines and Lyons [27]

developed a quadrature method based on the summation of products of the Wiener-process

increments, and showed that this method also had a similar scaling of the mean square error

with the number of terms. Thus, these discrete methods have an unfavorable scaling of

computational effort versus accuracy. The method of Ref. [27], however, has the advantage

that it lends itself to an adaptive algorithm (which was a key focus of that work), and both of

the discrete approaches generalize in a straightforward way to integrals of higher dimension

which arise in schemes of higher strong order than the Milstein scheme.

For the standard two-dimensional area integrals that arise in the Milstein scheme, there

is a body of theoretical work [28] on the joint and conditional PDF’s of the area integral and

the Wiener displacements that enables direct sampling methods. One direct method for the

sampling has been developed [29], which uses a 2-dimensional extension of a method due to

Marsaglia (see [29], [30] and references therein) applied to the joint PDF. This method is

direct and accurate and, unlike for the discrete approaches, the computational effort is only

very weakly dependent on the desired accuracy, but has perhaps found somewhat limited

use because 2-dimensional extension of Marsaglia’s method is somwhat involved.

Here, we propose and develop an alternative direct method, based on sampling the condi-

tional density (instead of the joint density) of the area integral given the Wiener increments.

The appeal of this method is that once the Wiener increments (which are normal random

numbers) are obtained, the remaining conditional PDF of the area integral consistent with

the Wiener-increment values is a one-dimensional function of the area integral, and the sam-

pling can be done with a standard transformation method. We use an additional approxima-

tion, the accuracy of which we will quantify, to greatly simplify the sampling. While small,

the errors associated with this approximation, can easily be removed, if needed, through

either a rejection method [30] or by use of an accurate numerical tabulation of the PDF

and a numerical transformation-method-based sampling routine. Our method gives very

good accuracy with a marginal cost for each sample comparable to sampling an additional
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Gaussian random number.

In this section, we will work with normalized Wiener increments and area integrals to

remove the explicit appearance of the numerical time step ∆t. Thus, we write ∆Wi (∆t) =
√
∆t∆Ŵi for i = 1, 2, where

∆Ŵi ≡ ∆Wi (1) =

ˆ 1

0

dWi (ξ) ,

and A12 (∆t), e.g., as it arises in Eqs. (7), (24) or (25) is normalized as A12 (∆t) = ∆tÂ12,

where

Â12 ≡ A12 (1) =

ˆ 1

0

W1 (ξ) dW2 (ξ) .

The carets will be removed in the remainder of this section.

A. Joint PDF of area integral and Gaussian displacements

The basic probability density function of interest is the joint probability density of ∆W1,

∆W2, and A12 which will be denoted as pJA(A12,∆W1,∆W2). This is related to the condi-

tional probability density of A12 given ∆W1 and ∆W2, pcA(A12|∆W1,∆W2) by

pJA(A12,∆W1,∆W2) = pcA(A12|∆W1,∆W2)p∆W (∆W1) p∆W (∆W2) ,

where p∆W is the probability density of the Wiener-process increments. The fundamental

body of work that underlies the sampling of these quantities [28] deals with the antisymmetric

“Levy area,” which for the two-dimensional case can be defined as the area included by the

curve (W1 (ξ) ,W2 (ξ)), ξ ∈ [0, 1] and its chord [28], i.e.,

L12 ≡
1

2

ˆ 1

0

[W1 (ξ) dW2 (ξ)−W2 (ξ) dW1 (ξ)] ,

and is related to the area integrals by

L12 ≡ A12 −
1

2
∆W1∆W2 (27)

=
1

2
∆W1∆W2 − A21.
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Figure 2: (a) Line plot φcL (k|R) vs. k for R = 0.0, 0.5, 1.0, . . . , 3.0. The wider curves are for
smaller R, and the narrower curves are for larger R. (b) Contour plot of φcL (k|R) vs. R and k.

Thus, for example,

pcA(A12|∆W1,∆W2) = pcL(A12 −
1

2
∆W1∆W2|∆W1,∆W2),

where pcL(L12|∆W1,∆W2) is the conditional probability density of L12 given ∆W1 and ∆W2.

Levy [28] showed that pcL(L12|∆W1,∆W2) depends on ∆W1 and ∆W2 only through the

combination R ≡
�

∆W 2
1 +∆W 2

2 , i.e., pcL(L12|∆W1,∆W2) = pcL(L12|R), and its charac-

teristic function is given by

φcL (k|R) = �exp (−ikL)�|R

=
k/2

sinh (k/2)
exp

�
R2

2

�
1− (k/2) cosh (k/2)

sinh (k/2)

��
, (28)

and that the corresponding (1-point unconditional) characteristic function of L is

φL (k) ≡ �exp (−ikL)�

=
1

cosh (k/2)
.

Plots of φcL (k|R) are shown in Fig. 2.

The PDF’s can be obtained easily from the their characteristic functions by direct (nu-

merical) Fourier integration, using an integration path on the real axis, as the resulting

integrands are nonsingular, smooth, bounded and approach zero rapidly for large |k|. [Also,

note that it is straightforward to use discrete Fourier transforms on a sufficiently large in-
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terval and sufficiently many points to evaluate such integrals over a wide range of L.]

The corresponding conditional and unconditional PDF’s for L are then given by

pcL (L|∆W1,∆W2) = pcL (L|R) ,

where



 pcL (L|R)

pL (L)



 =
1

2π

ˆ 

 φcL (k|R)

φL (k)



 exp (−ikL) dk. (29)

This gives

pL (L) =
1

cosh (πL)
.

The joint PDF pJL (L,R) is given by

pJL(L,R) = pcL(L|R) pR(R) ,

where pR(R) is the PDF of R

pR(R) = R exp

�
−R2

2

�
.

The results for pcL (L|R) and pJL (L,R) are not available in as simple a form as for pL (L),

but can be obtained to any desired accuracy by direct numerical evaluation of Eq. (29).

Plots of these functions are shown in Fig. 3.

As discussed above, the quantity of interest for the multidimensional Milstein schemes

is the area integral A, rather than L. It is therefore of interest to calculate and plot var-

ious 1- and 2-dimensional joint PDF’s involving A that can be compared with empirical

PDF’s resulting from any number generators used to generate A, even though the joint

PDF pJA(A12,∆W1,∆W2) is fundamentally 3-dimensional.
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Figure 3: Contour plots of (a) the conditional PDF pcL (L|R) and (b) the joint PDF pJL (L,R)
vs. R and L from semianalytical calculations [i.e., numerical Fourier inversion of the analytically
calculated characteristic function from Eq. (28)].

One such PDF of interest is the joint PDF pJA(A12, R), which can be obtained by putting

∆W1 = R cos θ

∆W2 = R sin θ,

and averaging over the angle θ.

The characteristic function of the conditional PDF of A given R is

φcA (k|R) ≡ �exp (−ikA)�|R

= J0

�
kR

2
/4
� k/2

sinh (k/2)
exp

�
R2

2

�
1− (k/2) cosh (k/2)

sinh (k/2)

��
, (30)

where J0 denotes the Bessel function of order zero. Again, this can be used to calculate

pJA(A12, R) via direct numerical Fourier inversion. The result is shown in Fig. 4.

Finally, this relation can be used to obtain the (unconditional) characteristic function of

A, by integrating over R.

φA (k) ≡ �exp (−ikA)�

=
1�

cosh (k)
.

The results for φL (k) and φA (k) can be Fourier inverted to give the corresponding PDF’s.
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Figure 4: Contour plot of the joint PDF pJA (A,R) vs. R and A from semianalytical calculation
using Eq. (30).

For pL (L) we have

pL (L) =
1

cosh (πL)
.

pA (A) can be expressed in terms of Gamma functions of complex argument, but the direct

numerical Fourier inversion is easy and accurate and, combined with asymptotic analysis of

the Fourier integral representation, is more useful than the Gamma-function representation.

B. Approximations and simple numerical generator for A

pcL (L|R) has an exact closed-form analytical expression for R = 0,

p0L (L) ≡ pcL (L|R = 0) =
π

2

1

cosh2 (L/2)
. (31)

For large R, an approximate saddle-point evaluation gives

pcL (L|R) ∼

�
1

π

�
6

1 +R2

�
exp

�
−
�

6

1 +R2

�
L
2

�
. (32)
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Figure 5: Comparison of pcL (L|R) with large-R approximation for R = 0 (narrow, tall curves), 2.5,
and 5 (wide, low curves).

This is compared with a direct numerical evaluation of pcL (L|R) in Fig. 5 where it is seen

that the large-R approximation gives good agreement with the numerical result for R � 2.5,

while the agreement becomes less satisfactory for smaller R.

In devising a sampling algorithm it is useful to note that the region of greatest probability

of the joint PDF pJL (L,R) is heavily influenced by the PDF of R, for which most of the

probability lies in the region R � 3. A useful approximation can be found based on the

above result for p0L (L) = pcL (L|R = 0). If we define a function s (R) ≡ pcL (L = 0|R), then

a useful approximation is

pcL (L|R) ≈ pcanL (L|R) = s (R) p0L (s (R)L) . (33)

A comparison between pcanL (L|R) and pcL (L|R) using 1D plots is shown in Fig. 6.

A more global view can be obtained from 2D plots of the errors in the (R,L) plane.

The relative error pcL (L|R) /pcanL (L|R) − 1 and absolute error in the resulting joint PDF

pJanL (L,R) ≡ pcanL (L|R) pR (R), pJanL (L,R)− pJL (L,R) are shown in Fig. 7. To put the

absolute error in pJanL (L,R) shown in the second frame of Fig. 7 in perspective, note that

the maximum value of pJL (L,R) is approximately 0.7, as shown in the second frame of Fig.

3.

A particularly useful aspect of Eq. (33) is that the inverse of its integral (distribution
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Figure 6: Comparison between pcanL (L|R) and pL (L|R) for R = 0 (narrow, tall curves), 1.0, 2.0,
and 3.0 (wide, low curves).

Figure 7: Contour plots of (a) r elative error in pcanL (L|R) and (b) absolute error in pJanL (L,R)
vs. R and L.

function), which is the function needed for sampling L can be obtained analytically in closed

form. The resulting sampling function is

LR (R) =
s (R)

2π
log

�
r

1− r

�
, (34)

where r a random number uniformly distribute between 0 and 1. Furthermore, a good
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Figure 8: Comparison of sa (R) (analytical approximation) with (actual) s (R).

analytical fit to s (R) is

s (R) ≈ sa (R) =
�
1 + (1.13663×R)2.27

�1/2.27
.

A comparison of sa (R) with s (R) is shown in Fig. 8. sa (R) can be used instead of s (R) in

Eq. (34).

The analytical expressions are useful for initial implementations and checks. For numeri-

cal sampling, rather than using the analytical formulas directly, it is much more computation-

ally efficient to form tables from suitable analytical expressions or numerical computations,

and to use interpolation from the resulting tables.

A property of pcanL (L|R) that is suggested by Fig. 6 and is clear from the asymptotic

expressions Eqs. (31) and (32) is that for large L, pcanL (L|R) decreases with L as slowly

or more slowly than pL (L|R). Because of this, our sampling method can be made more

accurate if needed by using a rejection method [30] with βpcanL (L|R), where β ≈ 1, as a

comparison function. From Figs. 6 and 7it is evident that the fraction of rejected samples

in such a method will be small, so that the refined sampling method will not be significantly

more computationally expensive than the unrefined method.
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Figure 9: Plot of pJL (L,R) vs. R and L for numbers produced by the numerical generator.

C. Results from numerical generators

A numerical generator based on Eq. (34) for the triplets (∆W1,∆W2, L12) and hence,

via Eq. (27), for the triplets (∆W1,∆W2, A12) has been written. The contour plot of the

resulting empirical pJL (L,R) from the numerical generator, for 2×105 points in (R,L) space,

is shown in Fig. 9. This plot shows excellent agreement with the near-exact semi-analytical

result of Fig. 3(b), apart from the expected statistical fluctuations in Fig. 9 due to the finite

number of samples. A more quantitative view of the excellent level of agreement is given by

the 1-dimensional plots of empirical and semi-analytical curves for pL (L) in Fig. 11.

The empirically generated pJA (A,R) is shown in Fig. 10. Again, apart from the expected

statistical fluctuations, this plot shows excellent agreement with the corresponding semi-

analytical result shown in Fig. 4. The 1-dimensional plots of empirical and semi-analytical

curves for pA (A) in Fig. 11 also show the excellent agreement.

D. Compounding of area integrals

In order to carry out error scaling studies involving discretizations using different time

steps of the same underlying stochastic path (solution of a stochastic ODE), the ODE

integrator must use random numbers at the coarser time levels that are suitably compounded

from those used at the finer time levels. For the Gaussian random displacements, this
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Figure 10: Plot of pJA (A,R) vs. R and A for numbers produced by the numerical generator.

Figure 11: pL (L) and pA (A), from semianalytical calcuations, from the Levy-area/area-integral
generator directly, and from compounded sets of numbers. There are three curves each for pL (L)
(upper set of curves) and pA (A), (lower set of curves).

compounding is simply addition of the displacements followed by a suitable normalization.

Thus, if Wl (t) is a Wiener process associated with random vector component l, δjWl ≡´ tj
tj−1

dWl (s) is the j’th Gaussian displacement over the time interval of length δt, [tj−1, tj],

where tj = tj−1+ δt, and ∆Wl ≡
´ ∆t

0 dWl (s), where ∆t = nδt, then a suitable compounding
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for use in the ODE discretization is simply

∆Wl =
n�

j=1

δjWl.

An alternative is to use displacements with unit variance at each time level. Thus, for

example,

δjWl =
√
δtδjŴl,

∆Wl =
√
∆t∆Ŵl.

Then it follows that

∆Ŵl =
1√
n

n�

j=1

δjŴl.

The corresponding compounding of the area integrals follows straightforwardly. If

δA12,j =

ˆ tj

tj−1

dW1 (η)

ˆ η

tj−1

dW2 (ξ) ,

and

∆A12 =

ˆ ∆t

0

dW1 (η)

ˆ η

0

dW2 (ξ) ,

then

∆A12 =
n�

i=1

�
δiW1

i−1�

j=1

δjW2 + δA12,i

�

This is illustrated in Fig. 12. Note that when the compounding is implemented as per this

formula, the number of operations scales as n, not as n2.

In the alternative normalization, if

δÂ12,j =
1

δt
δA12,j,

∆Â12 =
1

∆t
∆A12,

30















     


Figure 12: Composition of area integral for n = 6.

Figure 13: 2D PDF’s pJL (L,R) and pJA (A,R), from the compounded sets of numbers.

then

∆Â12 =
1

n

n�

i=1

�
δiŴ1

i−1�

j=1

δjŴ2 + δÂ12,i

�
.

This compounding has been implemented. Fig. 11 shows the 1D PDF’s pL (L) and

pA (A) from the semi-analytical calcuations, from the number generator directly, and from

compounded sets of numbers. Here again, 9× 104 sets of numbers are produced by the gen-

erator. The compounding in the results shown combines numbers from sets of 5 timesteps.

Fig. 13 shows 2D PDF’s pJL (L,R) and pJA (A,R), from the compounded sets of numbers.

Although the 2D plots are somewhat noisy (they are densities produced from 4×104 points,

these plots show good agreement with Figs. 3, 9, 4, and 10.
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V. RESULTS FROM NUMERICAL IMPLEMENTATION

A program based on the methods discussed in the previous sections has been written to

solve the two-dimensional version of the Coulomb-collision Langevin equations, Eqs. (17)

and (18) via the Euler-Maruyama and Milstein schemes, as given by Eqs. (23) and (24).

For the evaluation of the values of Dv(v) and Da(v) of Eqs. (20) and (21) at the particle

speed v, we use cubic-spline interpolation between accurately computed, tabulated values

of these quantities at a set of (equally spaced) nodes. For the coefficients in the Milstein

scheme we will also need the quantities D�
v(v) and D�

a(v), and these are also easily available

from the spline-interpolation routines. While some simple analytical fits are available for

the drag and diffusion coefficients of Eqs. (9) (10) (11) (see, e.g., Refs. [10] and [12]), we

use table-interpolation-based routines because they are at least equally efficient and more

accurate than inline numerical evaluation of the analytical fits. The tables themselves need

to be precalculated only once, and this can be done with almost any desired degree of

accuracy and nodal density. Furthermore, the computations involved in an optimized spline

interpolation using equally spaced nodes are as efficient as the evaluation of the analytical

fits, and more efficient than the evaluation of improved fits that use non-integer powers.

For the Milstein-algorithm computations, we use the sampling and compounding methods

described and demonstrated in the previous section.

The values of v from two sample trajectories, evolved with the Milstein algorithms and

with a variety of time step values, were shown in Fig. 1. In the remainder of this section,

we show other results from this implementation. We will first show a check that the correct

averaged phase-space density is obtained in a simple and important test situation, and then

that the Milstein algorithm gives the expected improvement in the scaling of the strong error

over the Euler-Maruyama algorithm.

Figure 14 shows the phase-space density ensemble of 105 particles at t = 0 and 4 evolved

from an isotropic Maxwellian with temperature equal to that of the background (which ap-

pears in the calculation of Da(v), Dv(v) and Fd(v), with the Milstein and Euler-Maruyama

schemes). The initial condition is a set of 105 samples from a three-dimensional isotropic

32



Figure 14: Phase-space density versus (a) v and (b) µ at t = 0 and 4 for an ensemble of 105 particles
evolved with the Milstein and Euler-Maruyama schemes using a time step value of 4 × 3−4. The
initial condition is a set of 105 samples from a three-dimensional isotropic Maxwellian distribution
with temperature equal to the field-particle temperature.

Maxwellian distribution with temperature equal to the field-particle temperature. As is seen

from Fig. 1, each trajectory undergoes significant evolution over times of order 1. Never-

theless, no discernible evolution of the phase space density beyond statistical fluctuations is

seen in Fig. 14. This test is consistent with the correctness of the basic model equations

and (both Euler-Maruyama and Milstein) discretizations. Furthermore the lack of evolution

of the v dependence of the phase space density is confirmation that the calculations (tabu-

lation and interpolation) of the diffusion and drag coefficients Da(v), Dv(v) and Fd(v), are

accurate at least in that the relevant Einstein relations [31] (i.e., the relations between these

quantities required to yield the correct equilibrium phase-space density) are well satisfied.

Further tests of the average behavior of large groups of particles, and which quantify the

accuracy of calculations of specific observables (or “payoffs” [19, 21], as they are referred to

in the financial mathematics literature) are underway and will be reported as a part of work

on weak error properties and mult-level schemes based upon the present work [32].

Results on strong convergence for the two-dimensional v−µ Langevin Coulomb collision

operator will now be shown and discussed. As described in the introduction [Eq. (2) and

the associated discussion], the strong convergence studies that will be shown here examine

differences for the same underlying trajectory between variable values, in particular the end-

point values, from computations done with different time-step values. The mean-squared

or rms values of these differences averaged over an ensemble of trajectories give a measure
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Figure 15: RMS error in solution for v vs. time step for Euler, diagonal Milstein - i.e., without area
integral term, and full Milstein, for tend = 0.02 and 0.4.

of the strong convergence rate and are of direct importance for the use of the Milstein and

Euler-Maruyama algorithms in Giles’ multilevel-Monte-Carlo schemes [21].

Figure 15 shows estimates of the strong errors in v in the solution versus ∆t. These

estimates are averages over a small ensemble of 100 realizations (trajectories) of the absolute

values of the difference between the end point value for a given realization and time step,

and the end-point value for the same realization run with the finest time step in the factor

3j sequence of runs. There are three sets of points on each of the plots: Euler-Maruyama,

“diagonal Milstein” (i.e., Milstein with only diagonal terms and no area integral term), and

full Milstein with the area integral term included. These plots show the expected O(∆t1/2)

scaling of the error for the Euler-Maruyama scheme and O(∆t) for both the diagonal and

full Milstein schemes. The diagonal-Milstein and full-Milstein results are identical, which

is to be expected because the evolution of v given by Eq. (23) is independent of µ and is

unaffected by the area-integral term in Eq. (24).

Figure 16 shows estimates of the strong errors in µ in the solution versus ∆t, defined

analogously to those for v and for the same computational run as in Fig. 15. Again, each

plot has a set of points for each of the Euler-Maruyama, diagonal Milstein , and full Milstein

schemes. The scaling of this error is O(∆t1/2) for both the Euler-Maruyama and diagonal

Milstein schemes, and O(∆t) for full Milstein scheme. These results show (a) that the full

Milstein scheme achieves the expected improvement in the scaling of the strong error in µ

and (b) while the diagonal Milstein term in Eq. (24) has an effect on the µ evolution, it
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Figure 16: RMS error in solution for µ vs. time step for Euler, diagonal Milstein, and full Milstein,
for tend = 0.02 and 0.4.

is insufficient to give improved strong error scaling. To achieve the benefit of the Milstein

scheme for the µ evolution, the area-integral term in Eq. (24) must also be kept.

VI. SUMMARY AND DISCUSSION

We have developed, implemented, and demonstrated the improved convergence of an

extension of Langevin-equation Monte-Carlo algorithms for Coulomb collisions from the

conventional Euler-Maruyama time integration to the next higher order of accuracy, the

Milstein scheme. Results from the numerical implementation show the expected improve-

ment [O(∆t) vs. O(∆t1/2)] in the strong convergence rate both for the speed (|v|) and

angular components of the scattering. An important result is that this improved conver-

gence is achieved for the angular component of the scattering if and only if the “area-integral”

terms in the Milstein scheme are included.

The resulting Milstein scheme is of value both as a step towards algorithms with improved

accuracy and efficiency either directly through algorithms with improved convergence in the

averages (weak convergence) or as a building block for multi-time-level schemes [21]. The

latter have been shown to give greatly reduced cost for a given overall error level compared

with conventional Monte-Carlo schemes, and their performance is improved considerably

when the Milstein algorithm is used for the underlying time advance versus the Euler-

Maruyama algorithm.

A key aspect of the extension is that it proceeds via a formulation of the angular scat-
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tering directly as SDE’s in the fixed-frame spherical-coordinate velocity variables. We have

attempted a Milstein extension of the quite widely used class of schemes [9, 11, 12] in which

the angular step is formulated in a frame aligned with the velocity at the start of the step.

This extension is partially successful in that improved strong convergence for the speed v is

easily obtained. However, we have not succeeded in obtaining improved strong convergence

for the angular component(s) of the scattering. We have traced this difficulty to the fact

that, while the Milstein extension of a single velocity step is straightforward, the aggregation

of such steps also involves the rotation of the coordinate system between applications of the

velocity steps. Various choices are possible for the choice of orientation of the unit vec-

tors/axes perpendicular to the velocity direction. Examples of such choices include choosing

one of the perpendicular unit vectors to be (a) perpendicular to the velocity direction and

a fixed plane or (b), in the ∇θ direction where θ is the polar angle with respect to a fixed

frame or (c) rotating the system of three orthogonal unit vectors as a rigid body about a

single axis. None of these choices yields a scaling of the error in the angular component of

the scattering that is faster than that for the Euler-Maruyama scheme.

We have also developed a new method for sampling the area integrals which is a simplifi-

cation of an earlier direct method by Gaines and Lyons [29] and which retains high accuracy.

We expect our method to be useful also for other applications that benefit from Milstein

and higher-order strong schemes, including chemical physics and financial modeling. Our

method is useful in its own right because of its relative simplicity compared with the method

of Ref. [29]. It is also expected to considerably reduce the computational requirements for

the sampling of the area integrals that is needed for adaptive strong integration. For adap-

tive integration (as opposed to the error scaling tests reported here), the random numbers

must be conditionally sampled at a finer (time-step) level, given the corresponding numbers

at the coarser level. For the Gaussian displacements, this conditional sampling is straight-

forward. For a multi-dimensional Milstein integrator, one needs to sample the finer triplets

of the two Gaussian Wiener displacements and area integral given the triplets associated

with the coarser time step. A method for doing this based on quadrature formulas has been

given by Gaines and Lyons [27], but a direct method is also possible and is expected to be

much cheaper computationally for a given level of accuracy. Such a direct sampling based

on the the full conditional PDF of Eqs. (28) and (29) involves a 4-dimensional sampling

function. If the conditional sampling is instead based on our approximate form given in
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Eq. (34), the dimensionality of the conditional sampling function is reduced to 3 [33]. This

reduction from 4 to 3 dimensions represents a significant reduction in the computational

memory requirement for an accurate tabulation of the conditional sampling function.

Finally, we note that in a system of SDE’s such as that of Eq. (7) of dimensionality D,

there are in general D(D− 1)/2 distinct Levy areas, and these are not independent of each

other. Gaines and Lyons [29] outline a method for generating the Levy areas for the case

of general D given a direct procedure for the D = 2 (single-Levy-area) case. This method,

additionally, requires the generation of a random D×D rotation matrix, i.e., element of the

orthogonal group OD. Straightforward methods for doing the latter are given, for example,

in Ref. [34].
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Appendix: Consistency of Eqs. (9)-(12) with the work of Lemons, et. al. (Ref.

[11]).

Here, some of the details of the comparison of Eqs. (9)-(12) with work of Lemons, et. al.

(Ref. [11]) are given. Equations (4a) and (4c) of Ref. [11] are the (stochastic differential)

equations of motion for the test particle, expressed in terms of its speed v and polar angle

θ with respect to a polar axis oriented in the current direction of the velocity:

dv (t) = −β (v) vdt+
√
δ2dWv (t) , (35)

dθ (t) =
�
2γ (v)dWθ (t) . (36)

A slightly different normalization of the quantities is used here than in Ref. [11], with Wv (t)

and Wθ (t) being independent Wiener processes with the normalization as given by Eq. (5).

Eqs. (17b) and (17c) of Lemons et. al. give respectively the drag and diffusion coefficients

for the particle speed (magnitude of the velocity), (17a) is the equation for the angular
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diffusion coefficient, and

β (v) =
AD

2v3

���
1 +

mt

mf

�
2l2fv

2 + 1

�
G (lfv)− Φ (lfv)

�
, (37)

δ
2 (v) =

ADG (lfv)

v
,

γ (v) =
AD

2v3
[Φ (lfv)−G (lfv)] . (38)

A derivation of Eq. (37) that is perhaps slightly more direct than, but is equivalent to,

that of Lemons et. al. is the following. We can express the change δv = v (t+ δt) − v (t)

in the particle speed v over a time δt in terms of the change δv = v (t+ δt) − v (t) in its

velocity v up to second order as

δv =
�

(v + δv)2 − v

≈ v̂ · δv +
1

2v
δv · (I− v̂v̂) · δv,

where v̂ ≡ v/v is the unit vector in the direction of v̂ and I is the 3-dimensional unit tensor.

It follows that

�δv� = v̂ · �δv�+ 1

2v
(I− v̂v̂) : �δvδv� (39)

= �δv��+
1

2v

�
δv

2
⊥
�
. (40)

Eq. (37) then follows from Eqs. (5a) and (5c) of Lemons et. al. and Eq. (40).

Note that in the statement of the algorithm of Ref. [11], θ represents the polar angle

with respect to an axis that is oriented in the direction of the test particle velocity at

the beginning of each time step. Eq. (36) is therefore not the SDE corresponding to the

polar-angle diffusion term in Eq. (8).
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